Monoclinic
$P 2_{1} / n$
$a=6.5453$ (6) \AA
$b=7.5995$ (8) \AA
$c=24.855(3) \AA$
$\beta=95.46$ (2) ${ }^{\circ}$
$V=1230.7(2) \AA^{3}$
$Z=4$
$\mathrm{Z}=4$
$D_{x}=1.502 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured
Data collection
Enraf-Nonius CAD-4
diffractometer
$\omega / 2 \theta$ scans
Absorption correction: none
2719 measured reflections
2495 independent reflections
1613 reflections with
$I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\text {int }}=0.019 \\
& \theta_{\max }=26.29^{\circ} \\
& h=0 \rightarrow 8 \\
& k=-9 \rightarrow 0 \\
& l=-30 \rightarrow 30 \\
& 3 \text { standard reflections } \\
& \quad \text { frequency: } 120 \mathrm{~min} \\
& \text { intensity decay: } 0.70 \%
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.117$
$S=1.114$
2493 reflections
188 parameters
H atoms: see below
$w=1 /\left(\sigma^{2}\left(F_{o}^{2}\right)+(0.0306 P)^{2}\right.$ $+0.6014 P$)
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$

Cell parameters from 25 reflections
$\theta=9.9-18.2^{\circ}$
$\mu=0.12 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Prism
$0.15 \times 0.12 \times 0.10 \mathrm{~mm}$
Pale yellow
$\Delta \rho_{\max }=0.221 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.167 \mathrm{e}^{-3}$
Extinction correction: SHELXL93 (Sheldrick, 1993)

Extinction coefficient: 0.054 (3)

Scattering factors from International Tables for Crystallography (Vol. C)

The authors also thank FINEP (Brazil), and Universidad del Valle and COLCIENCIAS (Colombia), for partial financial support.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FR1126). Services for accessing these data are described at the back of the journal.

References

Eichhorn, E. L. (1956). Acta Cryst. 9, 787-793.
Emsley, J. (1984). Complex Chemistry; Structure and Bonding, Vol. 57, pp. 147-191. Berlin: Springer-Verlag.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Frankenbach, G. M. \& Etter, M. C. (1992). Chem. Mater. 4, 272-278.
Frenz, B. A. (1978). The Enraf-Nonius CAD-4 SDP - A Real-Time System for Concurrent X-ray Data Collection and Crystal Structure Solution. Computing in Crustallography, edited by H. Schenk, R. Olthof-Hazekamp, H. van Koningsveld \& G. C. Bassi, pp. 64 71. Delft University Press.

Gridunova, G. V., Furmanova, N. G., Struchkov, Yu. T., Ezhkova, Z. I., Grigoreva, L. P. \& Chayanov, B. A. (1982). Kristallografiya, 27, 267-272.
Leiserowitz, L. (1976). Acta Cryst. B32, 775-802.
Moreno-Fuquen, R., De Almeida Santos, R. H. \& Lechat, J. R. (1996). Acta Cryst. C52, 220-222, and references therein.
Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen. Germany.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Cnistal Structures. University of Göttingen. Germany.
Wang, Y., Blessing, R. H., Ross, F. K. \& Coppens. P. (1976). Acta Cņst. B32, 572-578.
Zsolnai, L. (1995). ZORTEP. Interactive Graphics Program. University of Heidelberg, Germany.

Table 1. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

$\mathrm{O} 1-\mathrm{N} 1$	$1.310(2)$	$\mathrm{O} 6-\mathrm{C} 6$	$1.291(2)$
$\mathrm{N} 1-\mathrm{C} 5$	$1.353(3)$	$\mathrm{O}-\mathrm{HO} 6$	$1.01(3)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.354(3)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.478(3)$
$\mathrm{N} 2-\mathrm{C} 3$	$1.467(3)$	$\mathrm{C} 7-\mathrm{C} 12$	$1.389(3)$
$\mathrm{O} 4-\mathrm{C} 11$	$1.359(2)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.390(3)$
$\mathrm{O} 4-\mathrm{HO} 4$	$0.95(3)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.391(3)$
$\mathrm{O} 5-\mathrm{C} 6$	$1.246(3)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.383(3)$
$\mathrm{O} 1-\mathrm{N} 1-\mathrm{C} 5$	$119.8(2)$	$\mathrm{C} 12-\mathrm{C} 7-\mathrm{C} 8$	$120.3(2)$
$\mathrm{O} 1-\mathrm{N} 1-\mathrm{C} 1$	$119.8(2)$	$\mathrm{C} 12-\mathrm{C} 7-\mathrm{C} 6$	$119.0(2)$
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 1$	$120.4(2)$	$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 6$	$120.7(2)$
$\mathrm{C} 6-\mathrm{O}-\mathrm{HO} 6$	$113.7(15)$	$\mathrm{O} 4-\mathrm{C} 11-\mathrm{C} 12$	$117.6(2)$
$\mathrm{O} 5-\mathrm{C} 6-\mathrm{O} 6$	$122.6(2)$	$\mathrm{O} 4-\mathrm{C} 11-\mathrm{C} 10$	$122.4(2)$
$\mathrm{O} 5-\mathrm{C} 6-\mathrm{C} 7$	$120.9(2)$	$\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 10$	$119.9(2)$
$\mathrm{O} 6-\mathrm{C} 6-\mathrm{C} 7$	$116.5(2)$		

The ring H atoms were added at calculated positions and refined using a riding model with $S H E L X L 93$ (Sheldrick, 1993) defaults ($\mathrm{C}-\mathrm{H} 0.93 \AA$). A $B_{\text {iso }}$ value of $6.0 \AA^{2}$ was assigned to all H atoms. Atom HO4 was located from a difference Fourier map and its coordinates were refined.

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: SDP (Frenz, 1978). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: SHELXL93. Molecular graphics: ZORTEP (Zsolnai, 1995). Software used to prepare material for publication: SDP.

One of the authors (RMF) wishes to acknowledge financial support from a FAPESP grant (1996/7490-6).

Acta Cryst. (1999). C55, 220-222

1-(tert-Butyl)-3-(2-pyridyl)thiourea

Olyana Angelova, Krasimir Kossev and Vladimir Atanasov

Bulgarian Academy of Sciences, Central Laboratory of Mineralogy \& Crystallography, Rakovski str. 92, 1000 Sofia, Bulgaria. E-mail: jmacicek@bgcict.acad.bg
(Received I December I997: accepted 14 July 1998)

Abstract

In the title compound, $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CNHCSNH}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)$ (or $\mathrm{C}_{10} \mathrm{H}_{4} 5 \mathrm{~N}_{3} \mathrm{~S}$), the endo- $\mathrm{N} \cdots$-imino- N distance of $2.668(2) \AA$ is indicative of intramolecular hydrogen bonding. The pyridyl ring and the thiourea plane are inclined at an angle of $13.29(9)^{\circ}$. The molecules are dimerized through a pair of hydrogen bonds of the type $\mathrm{C}=\mathrm{S} \cdots \mathrm{H}-\mathrm{N}$.

Comment

Recently, we started a project on the synthesis and structure determination of unsymmetrically substituted urea and thiourea derivatives with potential applications in non-linear optics. N-Pyridylurea (Velikova, Angelova \& Kossev, 1997) and its addition compounds to some inorganic acids (Velikova, Petrova \& Angelova, 1997; Velikova, Angelova, Petrova \& Kossev, 1997) were found to crystallize in centrosymmetric space groups. The title compound, (I), is an intermediate in the synthesis of N-(2-pyridyl)thiourea (Nair, 1963, 1966) and its structure was determined for comparative purposes.

(I)

The S-C bond length of 1.683 (2) \AA corresponds well with the values in non-coordinated thioureas [1.68 (2) (Allen et al., 1987) and 1.69 (2) \AA (Teslya et al., 1987)]. When coordinated, the $\mathrm{C}-\mathrm{S}$ bond becomes longer, as, for example, in the complexes $3 \mathrm{~Pb}\left(\mathrm{ReO}_{4}\right)_{2} \cdot 2 \mathrm{tu} \cdot 3 \mathrm{H}_{2} \mathrm{O}$, where $\mathrm{tu}=$ thiourea [1.742(16) Å; Macíček \& Angelova, 1995], $\mathrm{Cd}\left(\mathrm{ReO}_{4}\right)_{2} .4 \mathrm{tu}[1.711$ (4) and 1.726 (4) \AA; Petrova et al., 1996], tetra[1-allyl-3-(2-pyridyl)thiourea-S]di- μ-chlorotetrachlorodibismuth(III) [1.71 (1) and 1.72 (2) \AA; Battaglia \& Corradi, 1981], and chloro(triphenylphosphine)-[1-phenyl-3-(2-pyridyl)thiourea]copper(I) and chlorobis-[1-phenyl-3-(2-pyridyl)thiourea]copper(I) [1.70 (2) and 1.72 (1) \AA; Ferrari et al., 1985]. A variation of the ureido $\mathrm{C}-\mathrm{N}$ bonds occurs in the title compound: the presence of the electron-withdrawing pyridyl group leads to elongation of the $\mathrm{C} 1-\mathrm{N} 2$ bond with respect to the

Fig. 1. A view of the title molecule, showing the atom-numbering scheme. Displacement ellipsoids are shown at the 50% probability level. H atoms are circles of an arbitrary radius.
shorter $\mathrm{C} 1-\mathrm{N} 3$ bond, which is affected by the electrondonating tert-butyl group.

The molecule is stabilized in the s-cisoid,s-transoid conformation by an intramolecular endo-N1 $\cdots \mathrm{H}-\mathrm{N} 3$ hydrogen bond, which has also been found in previously reported pyridylthiourea derivatives (Ferrari et al., 1985; Battaglia \& Corradi, 1981, 1983; Teslya et al., 1987) as well as in pyridylurea (Velikova, Angelova \& Kossev, 1997). The six-membered hydrogen-bonded ring and the pyridyl ring are close to coplanarity, the dihedral angle being $10.43(4)^{\circ}$.

An intermolecular hydrogen bond occurs between the imino-N2 atom and the S atom of the centrosymmetrically related molecule at $(-x,-y, 1-z$) (Table 2). The other intermolecular contacts correspond to typical van der Waals interactions.

Experimental

tert-Butyl isothiocyanate $(14 \mathrm{~g}, 0.124 \mathrm{~mol})$ was reacted with 2-aminopyridine ($12.2 \mathrm{~g}, 0.13 \mathrm{~mol}$) in benzene (5 ml) at 378 383 K for 2 h . After cooling and washing with n-hexane, 1-(tert-butyl)-3-(2-pyridyl)thiourea ($29 \mathrm{~g} ; 79 \%$ yield) was obtained.

Crystal data
$\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{~S}$
$M_{r}=209.31$
Monoclinic
$P 2_{1} / n$
$a=10.118$ (2) \AA
$b=9.705$ (3) \AA
$c=11.919(3) \AA$
$\beta=97.32(1)^{\circ}$
$V=1160.9(9) \AA^{3}$
$Z=4$
$D_{x}=1.1976 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CAD-4 diffractometer
ω scans
Absorption correction: none
6265 measured reflections
2792 independent reflections 2059 reflections with
$I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R(F)=0.043$
$w R\left(F^{2}\right)=0.128$
$S=1.020$
2792 reflections
127 parameters
H atoms constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0717 P)^{2}\right.$
$+0.1606 P$]
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 15 reflections
$\theta=9.4-11.3^{\circ}$
$\mu=0.246 \mathrm{~mm}^{-1}$
$T=292 \mathrm{~K}$
Prismatic
$0.43 \times 0.40 \times 0.37 \mathrm{~mm}$
Colourless

$$
\begin{aligned}
& R_{\text {int }}=0.018 \\
& \theta_{\max }=27.97^{\circ} \\
& h=-13 \rightarrow 12 \\
& k=-12 \rightarrow 12 \\
& l=-15 \rightarrow 15 \\
& 3 \text { standard reflections } \\
& \quad \text { frequency: } 120 \mathrm{~min} \\
& \text { intensity decay: } 1.9 \%
\end{aligned}
$$

$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=0.256 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.135 \mathrm{e}^{-3}$
Extinction correction: none
Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Selected geometric parameters $\left(\AA,^{\circ}\right)$

	$1.683(2)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.394(2)$
$\mathrm{S}-\mathrm{C} 1$	$1.329(2)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.374(2)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.345(2)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.375(3)$
$\mathrm{N} 1-\mathrm{C} 6$	$1.380(2)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.366(3)$
$\mathrm{N} 2-\mathrm{C} 1$	$1.396(2)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.515(2)$
$\mathrm{N} 2-\mathrm{C} 2$	$1.324(2)$	$\mathrm{C} 7-\mathrm{C} 9$	$1.524(2)$
$\mathrm{N} 3-\mathrm{C} 1$	$1.484(2)$	$\mathrm{C} 7-\mathrm{C} 10$	$1.515(3)$
$\mathrm{N} 3-\mathrm{C} 7$	$130.00(12)$	$\mathrm{N} 3-\mathrm{C} 7-\mathrm{C} 9$	$104.65(13)$
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 2$	$130.05(13)$	$\mathrm{N} 3-\mathrm{C} 7-\mathrm{C} 10$	$110.39(14)$
$\mathrm{C} 1-\mathrm{N} 3-\mathrm{C} 7$	$116.46(13)$	$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 9$	$109.04(16)$
$\mathrm{N} 3-\mathrm{C} 1-\mathrm{N} 2$	$126.36(11)$	$\mathrm{C} 10-\mathrm{C} 7-\mathrm{C} 8$	$111.13(16)$
$\mathrm{N} 3-\mathrm{C} 1-\mathrm{S}$	$117.19(10)$	$\mathrm{C} 10-\mathrm{C} 7-\mathrm{C} 9$	$110.10(16)$
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{S}$			

Table 2. Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N2—HN2 $\cdot \mathrm{S}^{\mathrm{i}}$	0.86	2.62	$3.454(1)$	163
N3—HN3 \cdots N 1	0.86	1.94	$2.668(2)$	142

Symmetry code: (i) $-x,-y, 1-z$.
The structure was solved by direct methods. All non-H atoms were refined anisotropically and H atoms were geometrically constrained with isotropic displacement parameters.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1992). Data reduction: SDP/PDP (Enraf-Nonius, 1985). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: KAPPA (Macíček, 1992).

This work has been supported by the Bulgarian Academy of Sciences and the Bulgarian National Science Fund (Project No. CH-588).

[^0]
References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
Battaglia, L. P. \& Corradi, A. B. (1981). J. Chem. Soc. Dalton Trans. pp. 23-26.
Battaglia, L. P. \& Corradi, A. B. (1983). J. Chem. Soc. Dalton Trans. pp. 2425-2428.
Enraf-Nonius (1985). Structure Determination Package. SDP/PDP User's Guide. Version 3.0. Enraf-Nonius, Delft, The Netherlands.
Enraf-Nonius (1992). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
Ferrari, M. B., Fava, G. G., Pelizzi, C. \& Tarasconi, P. (1985). Inorg. Chim. Acta, 97, 99-109.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Macíček, J. (1992). KAPPA. Program for the Preparation of Material for Publication from a ClF File. Bulgarian Academy of Sciences, Sofia, Bulgaria. Unpublished.
Macíček, J. \& Angelova, O. (1995). Acta Crust. C51, 2539-2542.
Nair, G. V. (1963). J. Indian Chem. Soc. 40, 953-961.
Nair, G. V. (1966). Indian J. Chem. 4, 517-522.
Petrova, R., Angelova, O., Bakardjieva, S. \& Macíček, J. (1996). Acta Cryst. C52, 2432-2434.
Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Teslya, I. A., Starikova, Z. A. \& Dorohov, V. A. (1987). Zh. Neorg. Khim. 28, 185-187.
Velikova, V., Angelova, O. \& Kossev, K. (1997). Acta Cryst. C53, 1273-1275.
Velikova, V., Angelova, O., Petrova, R. \& Kossev, K. (1997). Acta Crust. C53. 971-973.
Velikova, V., Petrova, R. \& Angelova, O. (1997). Acta Cryst. C53, 1230-1232.

Acta Cryst. (1999). C55, 222-226

Three 3-arylsulfonyl-1,3-oxazolidines

Michael Bolte, Sabine Monz and Kerstin Wagner

Institut für Organische Chemie, J. W. Goethe Universität
Frankfurt, Marie Curie Straße 11, 60439 Frankfurt-am-Main, Germany: E-mail: bolte@chemie.uni-frankfurt.de
(Received 5 August 1998: accepted 30 September 1998)

Abstract

The structure determinations of $(1 S, 2 R)-2-[(2 S, 4 R)$ -2-ethyl-4-phenyl-3-tosyl-1,3-oxazolidin-2-yl]-1-methyl-1-phenylpropanol, $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{NO}_{4} \mathrm{~S}$, (I), ethyl (3R)-3[($2 S, 4 R$)-2-ethyl-4-phenyl-3-tosyl-1,3-oxazolidin-2-yl]-3-hydroxy-3-phenylpropanoate, $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{NO}_{6} \mathrm{~S}$, (II), and (1R)-2,3,4,5-tetrahydro-5-[(2S,4R)-2-methyl-4-phenyl-3-tosyl-1,3-oxazolidin-2-yl]-3-methylene-5-phenylfuran-2one, $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{NO}_{5} \mathrm{~S}$, (III), were undertaken in order to determine the absolute configuration of the chiral centres. The oxazolidine rings of (I) and (II) exhibit a twist, whereas the oxazolidine ring of (III) adopts an envelope conformation. The hydroxyl groups of (I) and (II) form intramolecular hydrogen bonds.

Comment

Various methods for asymmetric synthesis are based on the utilization of chiral 1,3-oxazolidines. Stereochemically homogeneous 3 -arenesulfonyl-1,3-oxazolidines, readily available from enantiomerically pure β-aminoalkanols, are powerful chiral templates for auxiliarydirected asymmetric synthesis (Hoppe et al., 1989, 1990; Hoffmann et al., 1993). They readily add nucleophiles to the carbonyl group, and the attack can be directed selectively from either of its diastereotopic faces (Conde Frieboes et al., 1993; Harder et al., 1994). We have determined the crystal structures of three arylsulfonyloxazolidines, in order to establish unambiguously the absolute configuration of the reaction products. In all three cases, the newly formed chiral centre [C22 in (I), C21 in (II) and (III)] shows the R configuration.

[^0]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: NA1341). Services for accessing these data are described at the back of the journal.

