Cell parameters from 25

 $0.15\,\times\,0.12\,\times\,0.10$ mm

(Vol. C)

reflections $\theta=9.9{-}18.2^\circ$

 $\mu = 0.12 \text{ mm}^{-1}$ T = 293 K

Prism

Pale yellow

Monoclinic
$P2_1/n$
a = 6.5453 (6) Å
<i>b</i> = 7.5995 (8) Å
c = 24.855(3) Å
$\beta = 95.46 (2)^{\circ}$
$V = 1230.7 (2) \text{ Å}^3$
Z = 4
$D_x = 1.502 \text{ Mg m}^{-3}$
D_m not measured

Data collection

$R_{\rm int} = 0.019$
$\theta_{\rm max} = 26.29^{\circ}$
$h = 0 \rightarrow 8$
$k = -9 \rightarrow 0$
$l = -30 \rightarrow 30$
3 standard reflections
frequency: 120 min
intensity decay: 0.70%

Refinement

Refinement on F^2	$\Delta \rho_{\rm max} = 0.221 \ {\rm e} \ {\rm \AA}^{-3}$
$R[F^2 > 2\sigma(F^2)] = 0.038$	$\Delta \rho_{\rm min} = -0.167 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.117$	Extinction correction:
S = 1.114	SHELXL93 (Sheldrick,
2493 reflections	1993)
188 parameters	Extinction coefficient:
H atoms: see below	0.054(3)
$w = 1/(\sigma^2(F_o^2) + (0.0306P)^2)$	Scattering factors from
+ 0.6014P)	International Tables for
where $P = (F_o^2 + 2F_c^2)/3$	Crystallography (Vol. C
$(\Delta/\sigma)_{\rm max} < 0.001$	

Table 1. Selected geometric parameters (Å, °)

01N1	1.310(2)	O6—C6	1.291 (2)
N1—C5	1.353 (3)	O6HO6	1.01 (3)
N1—C1	1.354 (3)	C6—C7	1.478 (3)
N2—C3	1.467 (3)	C7—C12	1.389 (3)
04C11	1.359 (2)	C7—C8	1.390 (3)
O4—HO4	0.95 (3)	C10-C11	1.391 (3)
O5—C6	1.246 (3)	C11-C12	1.383 (3)
01-N1-C5	119.8 (2)	C12—C7—C8	120.3 (2)
01—N1—C1	119.8 (2)	C12-C7-C6	119.0 (2)
C5—N1—C1	120.4 (2)	C8—C7—C6	120.7 (2)
C6—O6—HO6	113.7 (15)	O4-C11-C12	117.6 (2)
O5—C6—O6	122.6 (2)	04—C11—C10	122.4 (2)
O5—C6—C7	120.9 (2)	C12-C11-C10	119.9 (2)
O6C6C7	116.5 (2)		

The ring H atoms were added at calculated positions and refined using a riding model with SHELXL93 (Sheldrick, 1993) defaults (C—H 0.93 Å). A B_{iso} value of 6.0 Å² was assigned to all H atoms. Atom HO4 was located from a difference Fourier map and its coordinates were refined.

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: SDP (Frenz, 1978). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: SHELXL93. Molecular graphics: ZORTEP (Zsolnai, 1995). Software used to prepare material for publication: SDP.

One of the authors (RMF) wishes to acknowledge financial support from a FAPESP grant (1996/7490-6).

The authors also thank FINEP (Brazil), and Universidad del Valle and COLCIENCIAS (Colombia), for partial financial support.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FR1126). Services for accessing these data are described at the back of the journal.

References

Eichhorn, E. L. (1956). Acta Cryst. 9, 787-793.

- Emsley, J. (1984). Complex Chemistry, Structure and Bonding, Vol. 57, pp. 147-191. Berlin: Springer-Verlag.
- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft. The Netherlands.

Frankenbach, G. M. & Etter, M. C. (1992). Chem. Mater. 4, 272-278.

- Frenz, B. A. (1978). The Enraf-Nonius CAD-4 SDP A Real-Time System for Concurrent X-ray Data Collection and Crystal Structure Solution. Computing in Crystallography, edited by H. Schenk, R. Olthof-Hazekamp, H. van Koningsveld & G. C. Bassi, pp. 64-71. Delft University Press.
- Gridunova, G. V., Furmanova, N. G., Struchkov, Yu. T., Ezhkova, Z. I., Grigoreva, L. P. & Chayanov, B. A. (1982). Kristallografiya, 27, 267-272.

Leiserowitz, L. (1976). Acta Cryst. B32, 775-802.

- Moreno-Fuquen, R., De Almeida Santos, R. H. & Lechat, J. R. (1996). Acta Cryst. C52, 220-222, and references therein.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen. Germany.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Wang, Y., Blessing, R. H., Ross, F. K. & Coppens. P. (1976). Acta Cryst. B32, 572-578.
- Zsolnai, L. (1995). ZORTEP. Interactive Graphics Program. University of Heidelberg, Germany.

Acta Cryst. (1999). C55, 220-222

1-(tert-Butyl)-3-(2-pyridyl)thiourea

OLYANA ANGELOVA, KRASIMIR KOSSEV AND VLADIMIR **A**TANASOV

Bulgarian Academy of Sciences, Central Laboratory of Mineralogy & Crystallography, Rakovski str. 92, 1000 Sofia, Bulgaria. E-mail: jmacicek@bgcict.acad.bg

(Received 1 December 1997; accepted 14 July 1998)

Abstract

In the title compound, $(CH_3)_3CNHCSNH(C_5H_4N)$ (or $C_{10}H_{15}N_3S$), the endo-N···imino-N distance of 2.668 (2) Å is indicative of intramolecular hydrogen bonding. The pyridyl ring and the thiourea plane are inclined at an angle of $13.29(9)^{\circ}$. The molecules are dimerized through a pair of hydrogen bonds of the type $C = S \cdots H - N.$

Comment

Recently, we started a project on the synthesis and structure determination of unsymmetrically substituted urea and thiourea derivatives with potential applications in non-linear optics. *N*-Pyridylurea (Velikova, Angelova & Kossev, 1997) and its addition compounds to some inorganic acids (Velikova, Petrova & Angelova, 1997; Velikova, Angelova, Petrova & Kossev, 1997) were found to crystallize in centrosymmetric space groups. The title compound, (I), is an intermediate in the synthesis of *N*-(2-pyridyl)thiourea (Nair, 1963, 1966) and its structure was determined for comparative purposes.

The S-C bond length of 1.683(2) Å corresponds well with the values in non-coordinated thioureas [1.68(2) (Allen *et al.*, 1987) and 1.69(2)Å (Teslya et al., 1987)]. When coordinated, the C-S bond becomes longer, as, for example, in the complexes $3Pb(ReO_4)_2.2tu.3H_2O$, where tu =thiourea [1.742 (16) Å; Macíček & Angelova, 1995], Cd(ReO₄)₂.4tu [1.711 (4) and 1.726 (4) Å; Petrova et al., 1996], tetra[1-allyl-3-(2-pyridyl)thiourea-S]di-µ-chlorotetrachlorodibismuth(III) [1.71 (1) and 1.72 (2) Å; Battaglia & Corradi, 1981], and chloro(triphenylphosphine)-[1-phenyl-3-(2-pyridyl)thiourea]copper(I) and chlorobis-[1-phenyl-3-(2-pyridyl)thiourea]copper(I) [1.70(2) and 1.72 (1) Å; Ferrari et al., 1985]. A variation of the ureido C-N bonds occurs in the title compound: the presence of the electron-withdrawing pyridyl group leads to elongation of the C1-N2 bond with respect to the

Fig. 1. A view of the title molecule, showing the atom-numbering scheme. Displacement ellipsoids are shown at the 50% probability level. H atoms are circles of an arbitrary radius.

shorter C1—N3 bond, which is affected by the electrondonating *tert*-butyl group.

The molecule is stabilized in the *s-cisoid,s-transoid* conformation by an intramolecular *endo*-N1···H—N3 hydrogen bond, which has also been found in previously reported pyridylthiourea derivatives (Ferrari *et al.*, 1985; Battaglia & Corradi, 1981, 1983; Teslya *et al.*, 1987) as well as in pyridylurea (Velikova, Angelova & Kossev, 1997). The six-membered hydrogen-bonded ring and the pyridyl ring are close to coplanarity, the dihedral angle being $10.43 (4)^{\circ}$.

An intermolecular hydrogen bond occurs between the imino-N2 atom and the S atom of the centrosymmetrically related molecule at (-x, -y, 1 - z) (Table 2). The other intermolecular contacts correspond to typical van der Waals interactions.

Experimental

tert-Butyl isothiocyanate (14 g, 0.124 mol) was reacted with 2-aminopyridine (12.2 g, 0.13 mol) in benzene (5 ml) at 378–383 K for 2 h. After cooling and washing with *n*-hexane, 1-(tert-butyl)-3-(2-pyridyl)thiourea (29 g; 79% yield) was obtained.

Crystal data

$C_{10}H_{15}N_{3}S$	Mo $K\alpha$ radiation
$M_r = 209.31$	$\lambda = 0.71073 \text{ Å}$
Monoclinic	Cell parameters from 15
$P2_1/n$	reflections
a = 10.118 (2) Å	$\theta = 9.4 - 11.3^{\circ}$
b = 9.705 (3) Å	$\mu = 0.246 \text{ mm}^{-1}$
c = 11.919(3) Å	T = 292 K
$3 = 97.32(1)^{\circ}$	Prismatic
V = 1160.9 (9) Å ³	$0.43 \times 0.40 \times 0.37$ mm
2 = 4	Colourless
$D_x = 1.1976 \text{ Mg m}^{-3}$	
D_m not measured	

Data collection Enraf-Nonius CAD-4 diffractometer ω scans Absorption correction: none 6265 measured reflections 2792 independent reflections 2059 reflections with $l > 2\sigma(l)$

Refinement

Refinement on F^2 R(F) = 0.043 $wR(F^2) = 0.128$ S = 1.0202792 reflections 127 parameters H atoms constrained $w = 1/[\sigma^2(F_o^2) + (0.0717P)^2 + 0.1606P]$ where $P = (F_o^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.256 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{min} = -0.135 \text{ e } \text{\AA}^{-3}$ Extinction correction: none Scattering factors from International Tables for Crystallography (Vol. C)

 $R_{\rm int} = 0.018$

 $\theta_{\rm max} = 27.97^{\circ}$ $h = -13 \rightarrow 12$

 $k = -12 \rightarrow 12$

 $l = -15 \rightarrow 15$

3 standard reflections

frequency: 120 min

intensity decay: 1.9%

	cieu geom		, ,
S	1.683 (2)	C2C3	1.394 (2)
N1-C2	1.329 (2)	C3C4	1.374 (2)
N1C6	1.345 (2)	C4C5	1.375 (3)
N2C1	1.380 (2)	C5C6	1.366 (3)
N2	1.396 (2)	C7—C8	1.515 (2)
N3-C1	1.324 (2)	С7—С9	1.524 (2)
N3C7	1.484 (2)	C7-C10	1.515 (3)
C1—N2—C2	130.00 (12)	N3-C7-C9	104.65 (13)
C1-N3-C7	130.05 (13)	N3C7C10	110.39 (14)
N3-C1-N2	116.46(13)	C8C7C9	109.04 (16)
N3C1S	126.36(11)	C10-C7-C8	111.13 (16)
N2-C1-S	117.19(10)	C10-C7-C9	110.10(16)
N3-C7-C8	111.32 (14)		

Table 1. Selected geometric parameters (Å, $^{\circ}$)

Table 2. Hydrogen-bonding geometry (Å, °)

D—H···A	D—H	$H \cdot \cdot \cdot A$	$D \cdots A$	D — $H \cdot \cdot \cdot A$
$N2 - HN2 \cdot \cdot \cdot S^{i}$	0.86	2.62	3.454 (1)	163
N3—HN3· · ·N1	0.86	1.94	2.668 (2)	142

Symmetry code: (i) -x, -y, 1-z.

The structure was solved by direct methods. All non-H atoms were refined anisotropically and H atoms were geometrically constrained with isotropic displacement parameters.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1992). Data reduction: SDP/PDP (Enraf-Nonius, 1985). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: KAPPA (Macíček, 1992).

This work has been supported by the Bulgarian Academy of Sciences and the Bulgarian National Science Fund (Project No. CH-588).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: NA1341). Services for accessing these data are described at the back of the journal.

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Battaglia, L. P. & Corradi, A. B. (1981). J. Chem. Soc. Dalton Trans. pp. 23-26.
- Battaglia, L. P. & Corradi, A. B. (1983). J. Chem. Soc. Dalton Trans. pp. 2425-2428.
- Enraf-Nonius (1985). Structure Determination Package. SDP/PDP User's Guide. Version 3.0. Enraf-Nonius, Delft, The Netherlands.
- Enraf-Nonius (1992). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
- Ferrari, M. B., Fava, G. G., Pelizzi, C. & Tarasconi, P. (1985). Inorg. Chim. Acta, 97, 99–109.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Macíček, J. (1992). KAPPA. Program for the Preparation of Material for Publication from a CIF File. Bulgarian Academy of Sciences, Sofia, Bulgaria. Unpublished.
- Macíček, J. & Angelova, O. (1995). Acta Cryst. C51, 2539-2542.
- Nair, G. V. (1963). J. Indian Chem. Soc. 40, 953-961.
- Nair, G. V. (1966). Indian J. Chem. 4, 517-522.
- Petrova, R., Angelova, O., Bakardjieva, S. & Macíček, J. (1996). Acta Cryst. C52, 2432-2434.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

© 1999 International Union of Crystallography Printed in Great Britain – all rights reserved

- Teslya, I. A., Starikova, Z. A. & Dorohov, V. A. (1987). Zh. Neorg. Khim. 28, 185–187.
- Velikova, V., Angelova, O. & Kossev, K. (1997). Acta Cryst. C53, 1273-1275.

Velikova, V., Angelova, O., Petrova, R. & Kossev, K. (1997). Acta Cryst. C53, 971-973.

Velikova, V., Petrova, R. & Angelova, O. (1997). Acta Cryst. C53, 1230-1232.

Acta Cryst. (1999). C55, 222-226

Three 3-arylsulfonyl-1,3-oxazolidines

MICHAEL BOLTE, SABINE MONZ AND KERSTIN WAGNER

Institut für Organische Chemie, J. W. Goethe Universität Frankfurt, Marie Curie Straße 11, 60439 Frankfurt-am-Main, Germany. E-mail: bolte@chemie.uni-frankfurt.de

(Received 5 August 1998; accepted 30 September 1998)

Abstract

The structure determinations of (1S,2R)-2-[(2S,4R)-2-ethyl-4-phenyl-3-tosyl-1, 3-oxazolidin-2-yl]-1-methyl-1-phenylpropanol, C₂₈H₃₃NO₄S, (I), ethyl (3R)-3-[(2S,4R)-2-ethyl-4-phenyl-3-tosyl-1,3-oxazolidin-2-yl]-3-hydroxy-3-phenylpropanoate, C₂₉H₃₃NO₆S, (II), and (1R)-2,3,4,5-tetrahydro-5-[(2S,4R)-2-methyl-4-phenyl-3tosyl-1,3-oxazolidin-2-yl]-3-methylene-5-phenylfuran-2one, C₂₈H₂₇NO₅S, (III), were undertaken in order to determine the absolute configuration of the chiral centres. The oxazolidine rings of (I) and (II) exhibit a twist, whereas the oxazolidine ring of (III) adopts an envelope conformation. The hydroxyl groups of (I) and (II) form intramolecular hydrogen bonds.

Comment

Various methods for asymmetric synthesis are based on the utilization of chiral 1,3-oxazolidines. Stereochemically homogeneous 3-arenesulfonyl-1,3-oxazolidines, readily available from enantiomerically pure β -aminoalkanols, are powerful chiral templates for auxiliarydirected asymmetric synthesis (Hoppe *et al.*, 1989, 1990; Hoffmann *et al.*, 1993). They readily add nucleophiles to the carbonyl group, and the attack can be directed selectively from either of its diastereotopic faces (Conde Frieboes *et al.*, 1993; Harder *et al.*, 1994). We have determined the crystal structures of three arylsulfonyloxazolidines, in order to establish unambiguously the absolute configuration of the reaction products. In all three cases, the newly formed chiral centre [C22 in (I), C21 in (II) and (III)] shows the *R* configuration.